3.4 Spark RDD Action操作7-saveAsNewAPIHadoopFile、saveAsNewAPIHadoopDataset

云计算 waitig 790℃ 百度已收录 0评论

1 saveAsNewAPIHadoopFile
def saveAsNewAPIHadoopFile[F <: OutputFormat[K, V]](path: String)(implicit fm: ClassTag[F]): Unit
def saveAsNewAPIHadoopFile(path: String, keyClass: Class[], valueClass: Class[], outputFormatClass: Class[_ <: OutputFormat[, ]], conf: Configuration = self.context.hadoopConfiguration): Unit

saveAsNewAPIHadoopFile用于将RDD数据保存到HDFS上,使用新版本Hadoop API。
用法基本同saveAsHadoopFile。
例子:
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import SparkContext._
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat
import org.apache.hadoop.io.Text
import org.apache.hadoop.io.IntWritable

var rdd1 = sc.makeRDD(Array((“A”,2),(“A”,1),(“B”,6),(“B”,3),(“B”,7)))
rdd1.saveAsNewAPIHadoopFile(“/tmp/lxw1234/”,classOf[Text],classOf[IntWritable],classOf[TextOutputFormat[Text,IntWritable]])

2 saveAsNewAPIHadoopDataset
def saveAsNewAPIHadoopDataset(conf: Configuration): Unit
作用同saveAsHadoopDataset,只不过采用新版本Hadoop API。
以写入HBase为例:

HBase建表:
create ‘lxw1234′,{NAME => ‘f1′,VERSIONS => 1},{NAME => ‘f2′,VERSIONS => 1},{NAME => ‘f3′,VERSIONS => 1}

完整的Spark应用程序:
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import SparkContext._
import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.client.Put

object Test {
def main(args : Array[String]) {
val sparkConf = new SparkConf().setMaster(“spark://lxw1234.com:7077”).setAppName(“lxw1234.com”)
val sc = new SparkContext(sparkConf);
var rdd1 = sc.makeRDD(Array((“A”,2),(“B”,6),(“C”,7)))

sc.hadoopConfiguration.set(“hbase.zookeeper.quorum “,”zkNode1,zkNode2,zkNode3”)
sc.hadoopConfiguration.set(“zookeeper.znode.parent”,”/hbase”)
sc.hadoopConfiguration.set(TableOutputFormat.OUTPUT_TABLE,”lxw1234”)
var job = new Job(sc.hadoopConfiguration)
job.setOutputKeyClass(classOf[ImmutableBytesWritable])
job.setOutputValueClass(classOf[Result])
job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])

rdd1.map(
x => {
var put = new Put(Bytes.toBytes(x._1))
put.add(Bytes.toBytes(“f1”), Bytes.toBytes(“c1”), Bytes.toBytes(x._2))
(new ImmutableBytesWritable,put)
}
).saveAsNewAPIHadoopDataset(job.getConfiguration)

sc.stop()
}
}

注意:保存到HBase,运行时候需要在SPARK_CLASSPATH中加入HBase相关的jar包。


本文由【waitig】发表在等英博客
本文固定链接:3.4 Spark RDD Action操作7-saveAsNewAPIHadoopFile、saveAsNewAPIHadoopDataset
欢迎关注本站官方公众号,每日都有干货分享!
等英博客官方公众号
点赞 (0)分享 (0)